П`ятниця, 29.03.2024, 13:02
Вітаю Вас Гість | RSS

Astronomy for people

Астрономічні спостереження

Основою для астрономічних досліджень є спостереження як самих космічних тіл або об'єктів (зірки, планети, Місяць), так і пов'язаних з ними явищ (схід, захід світил, затемнення Сонця і Місяця, фази Місяця або планет). В більшості випадків астрономічні спостереження потребують ретельних вимірювань кутів, моментів часу, світлових потоків та інших даних. Наступна обробка результатів спостережень нерідко потребує кропітких розрахунків і, в кінцевому рахунку, дозволяє отримати ті чи інші дані про природу досліджуваних тіл і створених ними систем.

До середини XX століття спостереження були єдиними джерелами знань (за винятком можливості дослідження хімічного складу метеоритів, що впали на Землю і енергії первинних космічних променів).

Однак перший штучний супутник Землі, запущений в 1957 р., відкрив нову еру космічних досліджень, що дозволило використовувати більш активні методи астрономічних досліджень з міжпланетних станцій, орбітальних обсерваторій і навіть з поверхні Місяця і інших планет[1].

В астрономії інформація в основному отримується від виявлення та аналізу видимого світла та інших спектрів електромагнітного випромінювання в космосі. Астрономічні спостереження можуть бути розділені відповідно до області електромагнітного спектра, в якій проводяться вимірювання. Деякі частини спектра можна спостерігати з Землі (тобто її поверхні), а інші спостереження ведуться тільки на великих висотах або в космосі (в космічних апаратах на орбіті Землі). Докладні відомості про ці групи досліджень наведено нижче.

Оптична астрономія

Історично оптична астрономія (яку ще називають астрономією видимого світла) є найдавнішою формою дослідження космосу — астрономії. Оптичні зображення спочатку були намальовані від руки. Наприкінці XIX століття і більшої частини ХХ століття, дослідження здійснювалися на основі зображень, які здобували за допомогою фотографій, зроблених на фотографічному устаткуванні. Сучасні зображення отримують з використанням цифрових детекторів, зокрема детектори на основі приладів із зарядовим зв'язком (ПЗЗ). Хоча видиме світло охоплює діапазон приблизно від 4000 Ǻ до 7000 Ǻ (400–700 нанометрів), обладнання, що застосовується у цьому діапазоні, можна застосувати і для дослідження близьких до нього ультрафіолетового та інфрачервоного діапазонів.

Інфрачервона астрономія

Інфрачервона астрономія стосується досліджень, виявлення та аналізу інфрачервоного випромінювання в космосі. Хоча довжина хвилі його близька до довжини хвилі видимого світла, інфрачервоне випромінювання сильно поглинається атмосферою, крім того, атмосфера Землі має значне інфрачервоне випромінювання. Тому обсерваторії для вивчення інфрачервоного випромінення мають бути розташовані на високих та сухих місцях або в космосі. Інфрачервоний спектр є корисним для вивчення об'єктів, які є занадто холодними, щоб випромінювати видиме світло таких об'єктів, як планети і навколо зіркові диски. Інфрачервоні промені можуть проходити через хмари пилу, які поглинають видиме світло, що дає змогу спостерігати молоді зірки в молекулярних хмарах і ядера галактик. Деякі молекули потужно випромінюють в інфрачервоному діапазоні, і це може бути використано для вивчення хімічних процесів у космосі (наприклад, для виявлення води в кометах).

Ультрафіолетова астрономія

Ультрафіолетова астрономія, здебільшого, застосовується для детального спостереження в ультрафіолетових довжинах хвиль приблизно від 100 до 3200 Ǻ (від 10 до 320 нанометрів). Світло на цих довжинах хвиль поглинається атмосферою Землі, тому дослідження цього діапазону виконують з верхніх шарів атмосфери або з космосу. Ультрафіолетова астрономія найкраще підходить для вивчення гарячих зір (ОФ зірки), оскільки основна частина їх випромінювання припадає саме на цей діапазон. Сюди належать дослідження блакитних зір в інших галактиках та планетарних туманностей, залишків наднових, активних галактичних ядер. Однак ультрафіолетове випромінювання легко поглинається міжзоряним пилом, тому під час вимірювання слід робити поправку на наявність останнього в космічному середовищі.

Радіоастрономія

Радіоастрономія — це дослідження випромінювання з довжиною хвилі, більшою за один міліметр (приблизно). Радіоастрономія відрізняється від більшості інших видів астрономічних спостережень тим, що досліджувані радіохвилі можна розглядати саме як хвилі, а не як окремі фотони. Отже, можна виміряти як амплітуду, так і фазу радіохвилі, а це не так легко зробити на діапазонах коротших хвиль.

Хоча деякі радіохвилі випромінюються астрономічними об'єктами у вигляді теплового випромінювання, більшість радіовипромінювання, що спостерігається з Землі, є за походженням синхротронним випромінюванням[Джерело?], що виникає, коли електрони рухаються у магнітному полі. Крім того, деякі спектральні лінії утворюються міжзоряним газом, зокрема спектральна лінія нейтрального водню довжиною 21 см.

У радіодіапазоні спостерігається широке розмаїття космічних об'єктів, зокрема наднові зірки, міжзоряний газ, пульсари та активні ядра галактик.

Рентгенівська астрономія

Рентгенівська астрономія вивчає астрономічні об'єкти в рентгенівському діапазоні. Зазвичай об'єкти випромінюють рентгенівське випромінювання завдяки:

  • синхротронному механізму (релятивістські електрони, що рухаються в магнітних полях)
  • теплове випромінювання від тонких шарів газу, нагрітих вище 107 K (10 мільйонів Кельвіна — так зване гальмівне випромінювання);
  • теплове випромінювання масивних газових тіл, нагрітих понад 107 K (так зване випромінювання абсолютно чорного тіла).

Оскільке ренгенівське випромінювання поглинається атмосферою Землі, рентгенівські спостереження здебільшого виконують з орбітальних станцій, ракети або космічних кораблів. До відомих рентгенівських джерел у космосі належать: рентгенівські подвійні зорі, пульсари, залишки наднових, еліптичні галактики, скупчення галактик, а також активні ядра галактик.

Гамма-астрономія

Астрономічні гамма-промені є дослідження астрономічних об'єктів з найкоротшою довжиною хвиль електромагнітного спектра. Гамма-промені можуть спостерігатися безпосередньо з таких супутників, як Комптон гамма-обсерваторія або спеціалізовані телескопи, які називаються атмосферні телескопи Черенкова. Ці телескопи фактично не виявляють гамма-промені безпосередньо, а виявляють спалахи видимого світла, що утворюється під час поглинання гамма-променів атмосферою Землі, внаслідок різноманітних фізичних процесів, що відбуваються із зарядженими частинками, які виникають під час поглинання, на кшталт ефекта Комптона або черенковського випромінювання.

Більшість джерел гамма-випромінювання є фактично джерелами гамма-сплесків, які випромінюють тільки гамма-промені протягом короткого проміжку часу від декількох мілісекунд до тисячі секунд, перш ніж розвіятися в просторі космосу. Тільки 10% від джерел гамма-випромінювання не є перехідними джерелами. До цих стійкий гамма-випромінювачів включають пульсари, нейтронні зірки і кандидати на чорні дірки в активних галактичних ядрах.

Астрономія полів, що не ґрунтуються на електромагнітному спектрі

До Землі, виходячи з дуже великих відстаней, потрапляє не тільки електромагнітне випромінювання, а й інші типи елементарних частинок.

У нейтринній астрономії використовують спеціальні підземні об'єкти такі, як SAGE, GALLEX і Каміока II/III для виявлення нейтрино. Ці нейтрино приходять головним чином від Сонця чи зірок, але також від супернових. Космічні промені, що складаються з частинок дуже високої енергії, які можуть розпадатися або поглинатися, входячи в атмосферу Землі, в результаті чого виникають каскади вторинних частинок. Крім того, деякі майбутні детектори нейтрино будуть також безпосередньо чутливі до нейтрино, народжених, коли космічні промені потрапляють до атмосфери Землі.

Новим напрямком в різновиді методів астрономії може стати гравітаційно-хвильова астрономія, яка прагне використовувати детектори гравітаційних хвиль для збору даних спостережень про компактні об'єкти. Кілька обсерваторій уже побудовано, наприклад, лазерний інтерферометр гравітаційної обсерваторії LIGO, але гравітаційні хвилі дуже важко виявити, і вони досі залишаються невловимими.

Планетарна астрономія використовує також безпосереднє вивчення за допомогою космічних кораблів і дослідницьких місій типу «за зразками й назад» (Sample Return). До них належать польоти місій з використанням датчиків; спускних апаратів, які можуть проводити експерименти на поверхні об'єктів, а також дають змогу здійснювати віддалене зондування матеріалів чи об'єктів і місії доставки на Землю зразків для прямих лабораторних досліджень.

Астрометрія та небесна механіка

Позагалактична астрономія: гравітаційне лінзування. Це зображення показує кілька блакитних петлеподібних об'єктів, які є численними зображеннями однієї галактики, розмноженими через ефект гравітаційної лінзи від скупчення жовтих галактик у центрі фотографії. Лінзу утворено гравітаційним полем скупчення, яке відхиляє світлові промені, що призводить до збільшення і викривлення зображення віддаленішого об'єкта

Один з найстаріших підрозділів астрономії, який вимірює положення небесних об'єктів. Ця галузь астрономії називається астрометрією. Історично точні знання про розташування Сонця, Місяця, планет і зір відіграють надзвичайно важливу роль у навігації.

Ретельні вимірювання розташування планет призвели до глибокого розуміння гравітаційних збурень, що дало змогу з високою точністю визначати їхнє розташування у минулому та передбачати на майбутнє. Ця галузь відома як небесна механіка. Зараз відстеження навколоземних об'єктів дає змогу прогнозування зближення з ними, а також можливі зіткнення різних об'єктів із Землею.

Вимірювання зоряних паралаксів найближчих зір є фундаментом для визначення відстаней у далекому космосі, що застосовується для виміру масштабів Всесвіту. Ці вимірювання забезпечили основу для визначення властивостей віддаленіших зір, бо їхні властивості можуть бути зіставлені з ближчими. Вимірювання променевих швидкостей і власних рухів небесних тіл дає змогу показати кінематику цих систем у нашій галактиці. Астрометричні результати також можуть використовуватися для вимірювання розподілу темної матерії в галактиці.

У 1990-х роках астрометричні методи вимірювання зоряних коливань було застосовано для виявлення великих позасонячних планет (планет на орбітах прилеглих зір).

Позаатмосферна астрономія

Дослідження за допомогою космічної техніки посідають особливе місце серед методів вивчення небесних тіл і космічного середовища. Початок було покладено запуском у СРСР у 1957 році першого у світі штучного супутника Землі. Космічні апарати дали змогу здійснювати дослідження в усіх діапазонах довжин хвиль електромагнітного випромінювання. Тому сучасну астрономію часто називають всехвильовою. Позаатмосферні спостереження дають змогу приймати в космосі випромінювання, які поглинає або дуже змінює земна атмосфера: далекі ультрафіолетові, рентгенівські й інфрачервоні промені, радіовипромінювання деяких довжин хвиль, що не доходять до Землі, а також корпускулярні випромінювання Сонця та інших тіл. Дослідження цих, раніше недоступних видів випромінювання зір і туманностей, міжпланетного та міжзоряного середовища дуже збагатили наші знання про фізичні процеси у Всесвіті. Зокрема, було відкрито невідомі раніше джерела рентгенівського випромінювання — рентгенівські пульсари. Багато інформації про природу найвіддаленіших від нас тіл та їхніх систем також здобуто завдяки дослідженням, виконаним за допомогою встановлених спектрографів на різних космічних апаратах.

Годинник
Календар
Слайд-шоу
Вхід на сайт
Пошук
Статистика

Онлайн всього: 1
Гостей: 1
Користувачів: 0